Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

catena-Poly[(dichloridocadmium)-di-μchlorido-[bis(morpholinium-κO)cadmium]-di-μ-chlorido]

Wen-xiang Wang* and Jing Dai

Ordered Matter Science Research Center, College of Chemistry and Chemical, Engineering, Southeast University, Nanjing 211189, People's Republic of China Correspondence e-mail: wxwang_1109@163.com

Received 12 July 2011; accepted 19 July 2011

Key indicators: single-crystal X-ray study; T = 298 K; mean σ (C–C) = 0.005 Å; R factor = 0.023; wR factor = 0.051; data-to-parameter ratio = 22.7.

In the title compound, $[Cd_2Cl_6(C_4H_{10}NO)_2]_n$, the coordination geometry of each Cd^{II} ion is distorted octahedral, but with quite different coordination environments. One Cd^{II} atom is coordinated by four Cl atoms and two O atoms from two morpholinium ligands, while the other is coordinated by six Cl atoms. Adjacent Cd^{II} atoms are interconnected alternately by paired chloride bridges, generating a chain parallel to the *a* axis. Interchain $N-H\cdots Cl$ interactions form a two-dimensional network.

Related literature

For general background to one-, two- and three-dimensional coordination polymers, see: Xiong *et al.* (1999); Ye *et al.* (2005); Zhao *et al.* (2008). For the dimeric coordination compound $[(MOR)_2Cu_2Cl_6]$ (MOR = morpholinium), see: Willett *et al.* (2005).

Experimental

Crystal data

 $\begin{bmatrix} Cd_2Cl_6(C_4H_{10}NO)_2 \end{bmatrix} \\ M_r = 613.78 \\ Orthorhombic, P2_12_12_1 \\ a = 7.0496 (14) \text{ Å} \\ b = 14.404 (3) \text{ Å} \\ c = 17.583 (4) \text{ Å}$

Data collection

Rigaku SCXmini diffractometer Absorption correction: multi-scan (*CrystalClear*; Rigaku, 2005) $T_{min} = 0.319, T_{max} = 0.611$

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.023 & 181 \text{ parameters} \\ wR(F^2) = 0.051 & H\text{-atom parameters constrained} \\ S = 1.07 & \Delta\rho_{\max} = 0.31 \text{ e } \text{\AA}^{-3} \\ 4100 \text{ reflections} & \Delta\rho_{\min} = -0.61 \text{ e } \text{\AA}^{-3} \end{array}$

V = 1785.4 (7) Å³

Mo $K\alpha$ radiation

 $0.45 \times 0.30 \times 0.15 \text{ mm}$

18533 measured reflections

4100 independent reflections

3893 reflections with $I > 2\sigma(I)$

 $\mu = 3.28 \text{ mm}^-$

T = 298 K

 $R_{\rm int}=0.035$

Z = 4

Table 1			
Hydrogen-bond	geometry	(Å,	°).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - \mathbf{H} \cdot \cdot \cdot A$
N1-H1A···Cl5 ⁱ	0.90	2.52	3.203 (3)	133
$N1 - H1A \cdots Cl6^{ii}$	0.90	2.98	3.733 (4)	143
$N1 - H1B \cdot \cdot \cdot Cl5^{iii}$	0.90	2.38	3.183 (3)	149
$N2-H2C \cdot \cdot \cdot Cl3^{iv}$	0.90	2.56	3.276 (3)	137
$N2-H2C\cdots Cl2^{iv}$	0.90	2.76	3.323 (3)	122
$N2-H2D\cdots Cl3^{v}$	0.90	2.73	3.413 (3)	133
$N2-H2D\cdots Cl4^{iii}$	0.90	2.74	3.497 (3)	142
Symmetry codes:	(i) $-x + 1 y$	$+\frac{1}{2}$ -7 + $\frac{3}{2}$ ((ii) $-r + 2 v + 1$	$\frac{1}{2} - z + \frac{3}{2}$ (iii)

Symmetry codes: (i) $-x + 1, y + \frac{1}{2}, -z + \frac{3}{2}$; (ii) $-x + 2, y + \frac{1}{2}, -z + \frac{3}{2}$; (iii) $-x + \frac{3}{2}, -y + 1, z + \frac{1}{2}$; (iv) $-x + 1, y - \frac{1}{2}, -z + \frac{3}{2}$; (v) $-x + \frac{1}{2}, -y + 1, z + \frac{1}{2}$.

Data collection: *CrystalClear* (Rigaku, 2005); cell refinement: *CrystalClear*; data reduction: *CrystalClear*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *SHELXTL* (Sheldrick, 2008); software used to prepare material for publication: *SHELXTL*.

This work was supported financially by the National Natural Science Foundation of China (20871028) and Jiangsu Province NSF (BK2008029).

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: JH2310).

References

Rigaku (2005). CrystalClear. Rigaku Corporation, Tokyo, Japan.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

- Willett, R. D., Butcher, R., Landee, C. P. & Twamley, B. T. (2005). *Polyhedron*, **24**, 2222–2231.
- Xiong, R.-G., Zuo, J.-L., You, X.-Z., Fun, H.-K. & Raj, S. S. S. (1999). New J. Chem. 23, 1051–1052.
- Ye, Q., Wang, X.-S., Zhao, H. & Xiong, R.-G. (2005). Chem. Soc. Rev. 34, 208– 225.
- Zhao, H., Qu, Z.-R., Ye, H. Y. & Xiong, R.-G. (2008). Chem. Soc. Rev. 37, 84–100.

supplementary materials

Acta Cryst. (2011). E67, m1144 [doi:10.1107/S160053681102914X]

catena-Poly[(dichloridocadmium)-di-*µ*-chlorido-[bis(morpholinium-*κO*)cadmium]-di-*µ*-chlorido]

W. Wang and J. Dai

Comment

Currently, the area of coordination polymers has undergone much development, with the aim of designing new materials with interesting physical properties. Numerous one-, two- and three-dimensional structures have been synthesized and characterized. (Xiong, *et al.*, 1999; Ye, *et al.*, 2005; Zhao *et al.*, 2008) In the present work, a reaction of MOR cations, HCl, and cadmium(II) chloride has produced a novel one-dimensional coordination polymer, in which N–H–Cl hydrogen bonds interactions aggregate the anions and cations into a two-dimensional network.

Quite different from that observed in the dimeric coordination compound of $(MOR)_2Cu_2Cl_6$ (Willett *et al.*, 2005), which links one morphine in each copper atom forming a semi-coordinate bond. The title compound $[C_8H_{20}Cd_2N_2O_2Cl_6]$ exhibits a new coordinated mode. It is shown that two Cd centers have quite different coordination environments. The Cd1 atom is octahedrally coordinated by four Cl atoms and two O atoms from two MOR ligands. The Cd2 atom is octahedrally coordinated by six Cl atoms. Interestingly, adjacent Cd ions are interconnected alternately by paired chloride bridges to generate an infinite one-dimensional coordination chain along the *a* axis. The compound is assembled into layer structures *via* 6 kinds of N–H—Cl synthons as shown in Fig 2. Due to the interaction of N–H—Cl hydrogen bond, from which the two protons on a given NH²⁺ group form bifurcated hydrogen bonds, the polymer constitute a two-dimensional framework at [1 1 0].

Experimental

MOR 0.87 g(1 mmol) was dissolved in ethanol, with carefully dripping hydrochloric acid 1 g(30%). After stirring 20 min, 2.5 g(.0.85 mmol) of dissolved cadmium chloride by water was mixed. Then filtering the solution to keep it cleaning. The reaction solution was cooled down to room temperature to volatilization. Colorless needlelike crystals was obtained on the tube wall after three days and of average size $0.13 \times 0.28 \times 0.42$ mm

Refinement

Positional parameters of all the H atoms were calculated geometrically and were allowed to ride on the C, N atoms to which they are bonded, with C—H =0.97 Å, $U_{iso}(H) = 1.2 U_{eq}(C)$, N—H = 0.90 Å, $U_{iso}(H) = 1.5 U_{eq}(N)$.

Figures

Fig. 1. The molecular structure of the title compound, with the displacement ellipsoids drawn at the 30% probability level.

Fig. 2. View along the c axis of the packing arrangement and intermolecular hydrogen bonds for the title compound.

catena-Poly[(dichloridocadmium)-di-μ-chlorido- [bis(morpholinium-κO)cadmium]-di-μ-chlorido]

Crystal data	
$[Cd_2Cl_6(C_4H_{10}NO)_2]$	F(000) = 1184
$M_r = 613.78$	$D_{\rm x} = 2.283 {\rm Mg m}^{-3}$
Orthorhombic, $P2_12_12_1$	Mo K α radiation, $\lambda = 0.71073$ Å
Hall symbol: p 2ac 2ab	Cell parameters from 1977 reflections
a = 7.0496 (14) Å	$\theta = 3.1 - 27.5^{\circ}$
b = 14.404 (3) Å	$\mu = 3.28 \text{ mm}^{-1}$
c = 17.583 (4) Å	T = 298 K
$V = 1785.4 (7) \text{ Å}^3$	Needle, colourless
Z = 4	$0.45 \times 0.30 \times 0.15 \text{ mm}$

Data collection

Rigaku SCXmini diffractometer	4100 independent reflections
Radiation source: fine-focus sealed tube	3893 reflections with $I > 2\sigma(I)$
graphite	$R_{\rm int} = 0.035$
Detector resolution: 13.6612 pixels mm ⁻¹	$\theta_{\text{max}} = 27.5^{\circ}, \ \theta_{\text{min}} = 3.1^{\circ}$
CCD_Profile_fitting scans	$h = -9 \rightarrow 9$
Absorption correction: multi-scan (<i>CrystalClear</i> ; Rigaku, 2005)	$k = -18 \rightarrow 18$
$T_{\min} = 0.319, \ T_{\max} = 0.611$	$l = -22 \rightarrow 22$
18533 measured reflections	

Refinement

Refinement on F^2	Primary atom site location: structure-invariant direct methods
Least-squares matrix: full	Secondary atom site location: difference Fourier map
$R[F^2 > 2\sigma(F^2)] = 0.023$	Hydrogen site location: inferred from neighbouring sites
$wR(F^2) = 0.051$	H-atom parameters constrained
<i>S</i> = 1.07	$w = 1/[\sigma^2(F_0^2) + (0.0224P)^2 + 0.3409P]$ where $P = (F_0^2 + 2F_c^2)/3$
4100 reflections	$(\Delta/\sigma)_{\rm max} = 0.003$
181 parameters	$\Delta \rho_{max} = 0.31 \text{ e} \text{ Å}^{-3}$
0 restraints	$\Delta \rho_{\rm min} = -0.61 \text{ e } \text{\AA}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Refinement. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc*. and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}*/U_{\rm eq}$
Cd1	0.72480 (3)	0.507712 (15)	0.684293 (13)	0.02333 (6)
Cd2	0.23018 (3)	0.497301 (15)	0.589235 (12)	0.02517 (6)
Cl2	0.41966 (11)	0.59933 (5)	0.69463 (4)	0.02457 (16)
Cl4	0.90345 (12)	0.60740 (6)	0.58524 (5)	0.03148 (19)
C16	1.03220 (11)	0.42036 (6)	0.70226 (5)	0.03077 (19)
C13	0.37109 (12)	0.60596 (6)	0.49228 (5)	0.03157 (19)
Cl1	0.53066 (12)	0.38288 (6)	0.61612 (5)	0.03188 (19)
01	0.8396 (3)	0.61772 (16)	0.78576 (12)	0.0280 (5)
N1	1.0415 (4)	0.7015 (2)	0.90750 (17)	0.0360 (7)
H1A	1.0127	0.7623	0.9054	0.043*
H1B	1.1214	0.6928	0.9468	0.043*
C4	0.7403 (5)	0.6518 (2)	0.85098 (19)	0.0347 (8)
H4A	0.6266	0.6151	0.8590	0.042*
H4B	0.7023	0.7156	0.8423	0.042*
C3	0.8640 (6)	0.6466 (3)	0.9206 (2)	0.0425 (10)
H3A	0.7963	0.6714	0.9641	0.051*
H3B	0.8960	0.5824	0.9313	0.051*
C2	1.1364 (5)	0.6735 (3)	0.8358 (2)	0.0386 (9)

supplementary materials

H2A	1.1879	0.6114	0.8414	0.046*
H2B	1.2408	0.7155	0.8254	0.046*
C1	0.9997 (5)	0.6753 (3)	0.77094 (18)	0.0325 (8)
H1C	0.9576	0.7385	0.7624	0.039*
H1D	1.0629	0.6539	0.7252	0.039*
C15	0.10021 (12)	0.37744 (6)	0.49674 (5)	0.03176 (19)
O2	0.6243 (3)	0.43396 (16)	0.80860 (13)	0.0319 (6)
C8	0.3919 (5)	0.3182 (2)	0.8424 (2)	0.0315 (8)
H8A	0.2587	0.3089	0.8541	0.038*
H8B	0.4234	0.2804	0.7985	0.038*
C7	0.4274 (4)	0.4181 (2)	0.8249 (2)	0.0318 (8)
H7A	0.3514	0.4365	0.7815	0.038*
H7B	0.3895	0.4559	0.8680	0.038*
C6	0.7363 (5)	0.4118 (2)	0.87368 (17)	0.0316 (8)
H6A	0.6979	0.4506	0.9161	0.038*
H6B	0.8687	0.4246	0.8629	0.038*
N2	0.5099 (4)	0.28953 (19)	0.90858 (16)	0.0300 (7)
H2C	0.4962	0.2282	0.9165	0.036*
H2D	0.4699	0.3194	0.9505	0.036*
C5	0.7142 (5)	0.3111 (2)	0.8952 (2)	0.0351 (8)
H5A	0.7629	0.2720	0.8547	0.042*
H5B	0.7865	0.2982	0.9410	0.042*

Atomic displacement parameters (\AA^2)

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
Cd1	0.01729 (11)	0.02593 (12)	0.02677 (12)	0.00002 (11)	0.00033 (8)	0.00048 (10)
Cd2	0.02531 (12)	0.02594 (12)	0.02425 (12)	-0.00506 (12)	-0.00041 (8)	0.00121 (10)
Cl2	0.0224 (4)	0.0255 (4)	0.0258 (4)	0.0022 (3)	-0.0006 (3)	0.0002 (3)
Cl4	0.0300 (4)	0.0365 (5)	0.0280 (4)	0.0000 (4)	0.0046 (3)	0.0075 (4)
Cl6	0.0213 (4)	0.0357 (4)	0.0353 (5)	0.0040 (3)	0.0011 (3)	0.0101 (4)
C13	0.0338 (5)	0.0352 (5)	0.0256 (4)	-0.0084 (4)	0.0023 (3)	0.0036 (4)
Cl1	0.0281 (4)	0.0280 (4)	0.0395 (5)	-0.0002 (3)	-0.0061 (4)	-0.0057 (4)
01	0.0246 (12)	0.0347 (13)	0.0246 (12)	-0.0051 (10)	0.0029 (9)	-0.0076 (10)
N1	0.0292 (16)	0.0423 (18)	0.0365 (17)	0.0039 (14)	-0.0070 (14)	-0.0152 (15)
C4	0.0261 (19)	0.045 (2)	0.0327 (18)	-0.0024 (17)	0.0074 (16)	-0.0129 (15)
C3	0.045 (2)	0.053 (3)	0.029 (2)	-0.007 (2)	0.0011 (17)	-0.0127 (18)
C2	0.0267 (19)	0.051 (2)	0.038 (2)	-0.0008 (17)	0.0012 (16)	-0.0165 (18)
C1	0.0271 (19)	0.043 (2)	0.027 (2)	-0.0098 (16)	0.0036 (15)	-0.0054 (15)
C15	0.0317 (4)	0.0331 (4)	0.0305 (4)	-0.0060 (4)	-0.0034 (4)	-0.0049 (4)
02	0.0229 (12)	0.0453 (14)	0.0276 (13)	-0.0066 (11)	-0.0028 (10)	0.0131 (11)
C8	0.0253 (18)	0.035 (2)	0.034 (2)	0.0018 (15)	-0.0012 (15)	-0.0027 (16)
C7	0.0211 (17)	0.039 (2)	0.0357 (19)	0.0013 (15)	0.0048 (14)	0.0137 (16)
C6	0.032 (2)	0.0362 (18)	0.0265 (18)	-0.0057 (16)	-0.0049 (15)	0.0055 (13)
N2	0.0386 (18)	0.0201 (14)	0.0312 (16)	-0.0014 (13)	0.0028 (13)	0.0020 (12)
C5	0.036 (2)	0.0305 (18)	0.039 (2)	0.0028 (17)	-0.0134 (17)	0.0035 (15)

Geometric parameters (Å, °)

Cd1—O1	2.520 (2)	С3—НЗА	0.9700
Cd1—Cl6	2.5257 (9)	С3—Н3В	0.9700
Cd1—Cl2	2.5301 (9)	C2—C1	1.494 (5)
Cd1—O2	2.531 (2)	C2—H2A	0.9700
Cd1—Cl1	2.5579 (9)	С2—Н2В	0.9700
Cd1—Cl4	2.5848 (9)	C1—H1C	0.9700
Cd2—Cl3	2.5184 (9)	C1—H1D	0.9700
Cd2—C15	2.5427 (9)	O2—C6	1.427 (4)
Cd2—Cl6 ⁱ	2.6694 (9)	O2—C7	1.436 (4)
Cd2—Cl2	2.7163 (9)	C8—N2	1.489 (4)
Cd2—Cl1	2.7251 (10)	C8—C7	1.493 (5)
Cd2—Cl4 ⁱ	2.7974 (10)	C8—H8A	0.9700
Cl4—Cd2 ⁱⁱ	2.7974 (10)	C8—H8B	0.9700
Cl6—Cd2 ⁱⁱ	2.6694 (9)	C7—H7A	0.9700
01—C1	1.424 (4)	С7—Н7В	0.9700
O1—C4	1.430 (4)	C6—C5	1.508 (4)
N1—C2	1.482 (4)	С6—Н6А	0.9700
N1—C3	1.498 (5)	С6—Н6В	0.9700
N1—H1A	0.9000	N2—C5	1.492 (5)
N1—H1B	0.9000	N2—H2C	0.9000
C4—C3	1.505 (5)	N2—H2D	0.9000
C4—H4A	0 9700	C5—H5A	0.9700
	0.9700	00 11011	
C4—H4B	0.9700	С5—Н5В	0.9700
C4—H4B O1—Cd1—Cl6	0.9700 87.09 (6)	C5—H5B N1—C3—H3A	0.9700 109.8
C4—H4B O1—Cd1—Cl6 O1—Cd1—Cl2	0.9700 87.09 (6) 83.92 (5)	C5—H5B N1—C3—H3A C4—C3—H3A	0.9700 109.8 109.8
C4—H4B O1—Cd1—Cl6 O1—Cd1—Cl2 Cl6—Cd1—Cl2	0.9700 87.09 (6) 83.92 (5) 168.61 (3)	C5—H5B N1—C3—H3A C4—C3—H3A N1—C3—H3B	0.9700 109.8 109.8 109.8
C4—H4B O1—Cd1—Cl6 O1—Cd1—Cl2 Cl6—Cd1—Cl2 O1—Cd1—Cl2	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7)	C5—H5B N1—C3—H3A C4—C3—H3A N1—C3—H3B C4—C3—H3B	0.9700 109.8 109.8 109.8 109.8 109.8
C4—H4B O1—Cd1—Cl6 O1—Cd1—Cl2 Cl6—Cd1—Cl2 O1—Cd1—O2 Cl6—Cd1—O2	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6)	C5—H5B N1—C3—H3A C4—C3—H3A N1—C3—H3B C4—C3—H3B H3A—C3—H3B	0.9700 109.8 109.8 109.8 109.8 109.8 109.8
C4—H4B O1—Cd1—Cl6 O1—Cd1—Cl2 Cl6—Cd1—Cl2 O1—Cd1—O2 Cl6—Cd1—O2 Cl2—Cd1—O2	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6)	C5—H5B N1—C3—H3A C4—C3—H3A N1—C3—H3B C4—C3—H3B H3A—C3—H3B N1—C2—C1	0.9700 109.8 109.8 109.8 109.8 109.8 108.2 110.7 (3)
C4—H4B O1—Cd1—Cl6 O1—Cd1—Cl2 Cl6—Cd1—Cl2 O1—Cd1—O2 Cl6—Cd1—O2 Cl2—Cd1—O2 O1—Cd1—O2 O1—Cd1—O2	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5)	C5—H5B N1—C3—H3A C4—C3—H3A N1—C3—H3B C4—C3—H3B H3A—C3—H3B N1—C2—C1 N1—C2—H2A	0.9700 109.8 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5
C4—H4B O1—Cd1—Cl6 O1—Cd1—Cl2 Cl6—Cd1—Cl2 O1—Cd1—O2 Cl6—Cd1—O2 Cl2—Cd1—O2 O1—Cd1—Cl1 Cl6—Cd1—Cl1	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5) 99.64 (3)	C5—H5B N1—C3—H3A C4—C3—H3A N1—C3—H3B C4—C3—H3B H3A—C3—H3B N1—C2—C1 N1—C2—H2A C1—C2—H2A	0.9700 109.8 109.8 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5 109.5
C4—H4B O1—Cd1—Cl6 O1—Cd1—Cl2 Cl6—Cd1—Cl2 O1—Cd1—O2 Cl6—Cd1—O2 Cl2—Cd1—O2 O1—Cd1—Cl1 Cl6—Cd1—Cl1 Cl6—Cd1—Cl1	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5) 99.64 (3) 86.87 (3)	C5—H5B N1—C3—H3A C4—C3—H3A N1—C3—H3B C4—C3—H3B H3A—C3—H3B N1—C2—C1 N1—C2—H2A C1—C2—H2A N1—C2—H2B	0.9700 109.8 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5 109.5
C4-H4B $O1-Cd1-Cl6$ $O1-Cd1-Cl2$ $Cl6-Cd1-Cl2$ $O1-Cd1-O2$ $Cl6-Cd1-O2$ $Cl2-Cd1-O2$ $O1-Cd1-Cl1$ $Cl6-Cd1-Cl1$ $Cl6-Cd1-Cl1$ $Cl2-Cd1-Cl1$ $O2-Cd1-Cl1$	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5) 99.64 (3) 86.87 (3) 87.70 (6)	C5—H5B N1—C3—H3A C4—C3—H3A N1—C3—H3B C4—C3—H3B H3A—C3—H3B N1—C2—C1 N1—C2—H2A C1—C2—H2A N1—C2—H2B C1—C2—H2B	0.9700 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5 109.5 109.5
C4-H4B $O1-Cd1-Cl6$ $O1-Cd1-Cl2$ $Cl6-Cd1-Cl2$ $O1-Cd1-O2$ $Cl6-Cd1-O2$ $Cl2-Cd1-O2$ $O1-Cd1-Cl1$ $Cl6-Cd1-Cl1$ $Cl6-Cd1-Cl1$ $Cl2-Cd1-Cl1$ $O2-Cd1-Cl1$ $O1-Cd1-Cl1$	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5) 99.64 (3) 86.87 (3) 87.70 (6) 88.36 (6)	C5—H5B N1—C3—H3A C4—C3—H3A C4—C3—H3B C4—C3—H3B H3A—C3—H3B N1—C2—C1 N1—C2—H2A C1—C2—H2A N1—C2—H2B C1—C2—H2B H2A—C2—H2B	0.9700 109.8 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5 109.5 109.5 109.5 109.5 109.5
C4-H4B $O1-Cd1-Cl6$ $O1-Cd1-Cl2$ $Cl6-Cd1-Cl2$ $O1-Cd1-O2$ $Cl6-Cd1-O2$ $Cl2-Cd1-O2$ $O1-Cd1-Cl1$ $Cl6-Cd1-Cl1$ $Cl2-Cd1-Cl1$ $O2-Cd1-Cl1$ $O2-Cd1-Cl1$ $O1-Cd1-Cl4$	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5) 99.64 (3) 86.87 (3) 87.70 (6) 88.36 (6) 86.73 (3)	C5—H5B N1—C3—H3A C4—C3—H3A N1—C3—H3B C4—C3—H3B H3A—C3—H3B N1—C2—C1 N1—C2—H2A C1—C2—H2A N1—C2—H2B C1—C2—H2B H2A—C2—H2B H2A—C2—H2B O1—C1—C2	0.9700 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5 109.5 109.5 109.5 108.1 111.2 (3)
C4-H4B $O1-Cd1-Cl6$ $O1-Cd1-Cl2$ $Cl6-Cd1-Cl2$ $O1-Cd1-O2$ $Cl6-Cd1-O2$ $Cl2-Cd1-O2$ $O1-Cd1-Cl1$ $Cl6-Cd1-Cl1$ $Cl6-Cd1-Cl1$ $O2-Cd1-Cl1$ $O2-Cd1-Cl1$ $O1-Cd1-Cl4$ $Cl6-Cd1-Cl4$	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5) 99.64 (3) 86.87 (3) 87.70 (6) 88.36 (6) 86.73 (3) 99.96 (3)	C5 $-$ H5B N1 $-$ C3 $-$ H3A C4 $-$ C3 $-$ H3A N1 $-$ C3 $-$ H3B C4 $-$ C3 $-$ H3B H3A $-$ C3 $-$ H3B N1 $-$ C2 $-$ C1 N1 $-$ C2 $-$ H2A C1 $-$ C2 $-$ H2A C1 $-$ C2 $-$ H2B C1 $-$ C2 $-$ H2B H2A $-$ C2 $-$ H2B O1 $-$ C1 $-$ C2 O1 $-$ C1 $-$ C2 O1 $-$ C1 $-$ H1C	0.9700 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5 109.5 109.5 109.5 109.5 108.1 111.2 (3) 109.4
C4 - H4B $O1 - Cd1 - Cl6$ $O1 - Cd1 - Cl2$ $Cl6 - Cd1 - Cl2$ $O1 - Cd1 - O2$ $Cl6 - Cd1 - O2$ $Cl2 - Cd1 - O2$ $O1 - Cd1 - Cl1$ $Cl2 - Cd1 - Cl1$ $Cl6 - Cd1 - Cl1$ $O2 - Cd1 - Cl1$ $O2 - Cd1 - Cl1$ $O1 - Cd1 - Cl4$ $Cl6 - Cd1 - Cl4$ $Cl2 - Cd1 - Cl4$ $O2 - Cd1 - Cl4$	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5) 99.64 (3) 86.87 (3) 87.70 (6) 88.36 (6) 86.73 (3) 99.96 (3) 162.05 (6)	C5 H5R C5-H5B N1-C3-H3A C4-C3-H3A C4-C3-H3B H3A-C3-H3B N1-C2-C1 N1-C2-H2A C1-C2-H2A N1-C2-H2B C1-C2-H2B H2A-C2-H2B H2A-C2-H2B O1-C1-C2 O1-C1-H1C C2-C1-H1C	0.9700 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.4 109.4
C4 - H4B $O1 - Cd1 - Cl6$ $O1 - Cd1 - Cl2$ $Cl6 - Cd1 - Cl2$ $O1 - Cd1 - O2$ $Cl6 - Cd1 - O2$ $Cl6 - Cd1 - O2$ $Cl2 - Cd1 - O2$ $O1 - Cd1 - Cl1$ $Cl6 - Cd1 - Cl1$ $Cl2 - Cd1 - Cl1$ $O2 - Cd1 - Cl1$ $O1 - Cd1 - Cl4$ $Cl6 - Cd1 - Cl4$ $Cl2 - Cd1 - Cl4$ $Cl2 - Cd1 - Cl4$	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5) 99.64 (3) 86.87 (3) 87.70 (6) 88.36 (6) 86.73 (3) 99.96 (3) 162.05 (6) 109.60 (3)	C5 H5R C5-H5B N1-C3-H3A C4-C3-H3A C4-C3-H3B C4-C3-H3B H3A-C3-H3B N1-C2-C1 N1-C2-H2A C1-C2-H2A C1-C2-H2B C1-C2-H2B H2A-C2-H2B O1-C1-C2 O1-C1-H1C C2-C1-H1C O1-C1-H1D	0.9700 109.8 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.4 109.4 109.4
C4-H4B $O1-Cd1-Cl6$ $O1-Cd1-Cl2$ $Cl6-Cd1-Cl2$ $O1-Cd1-O2$ $Cl6-Cd1-O2$ $Cl2-Cd1-O2$ $O1-Cd1-Cl1$ $Cl2-Cd1-Cl1$ $Cl6-Cd1-Cl1$ $O2-Cd1-Cl1$ $O1-Cd1-Cl1$ $O1-Cd1-Cl4$ $Cl6-Cd1-Cl4$ $Cl6-Cd1-Cl4$ $Cl2-Cd1-Cl4$ $Cl2-Cd1-Cl4$ $Cl2-Cd1-Cl4$ $Cl3-Cd2-Cl5$	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5) 99.64 (3) 86.87 (3) 87.70 (6) 88.36 (6) 86.73 (3) 99.96 (3) 162.05 (6) 109.60 (3) 97.53 (3)	C5 H5H C5-H5B N1-C3-H3A C4-C3-H3A N1-C3-H3B C4-C3-H3B H3A-C3-H3B N1-C2-C1 N1-C2-H2A C1-C2-H2A C1-C2-H2B C1-C2-H2B H2A-C2-H2B D1-C1-C2 O1-C1-H1C C2-C1-H1C O1-C1-H1D C2-C1-H1D	0.9700 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5 109.5 109.5 109.5 109.5 109.5 109.4 109.4 109.4 109.4
$C4-H4B$ $O1-Cd1-Cl6$ $O1-Cd1-Cl2$ $Cl6-Cd1-Cl2$ $O1-Cd1-O2$ $Cl6-Cd1-O2$ $Cl2-Cd1-O2$ $O1-Cd1-Cl1$ $Cl2-Cd1-Cl1$ $Cl2-Cd1-Cl1$ $O2-Cd1-Cl1$ $O2-Cd1-Cl1$ $O1-Cd1-Cl4$ $Cl6-Cd1-Cl4$ $Cl6-Cd1-Cl4$ $Cl2-Cd1-Cl4$ $Cl2-Cd1-Cl4$ $Cl2-Cd1-Cl4$ $Cl3-Cd2-Cl5$ $Cl3-Cd2-Cl6^{i}$	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5) 99.64 (3) 86.87 (3) 87.70 (6) 88.36 (6) 88.36 (6) 86.73 (3) 99.96 (3) 162.05 (6) 109.60 (3) 97.53 (3)	C5 H5R C5-H5B N1-C3-H3A C4-C3-H3A C4-C3-H3B C4-C3-H3B H3A-C3-H3B N1-C2-C1 N1-C2-H2A C1-C2-H2A N1-C2-H2B C1-C2-H2B H2A-C2-H2B H2A-C2-H2B O1-C1-C2 O1-C1-H1C C2-C1-H1C O1-C1-H1D C2-C1-H1D H1C-C1-H1D	0.9700 109.8 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.4 109.4 109.4 109.4 109.4 109.4 109.4
C4-H4B $O1-Cd1-Cl6$ $O1-Cd1-Cl2$ $Cl6-Cd1-Cl2$ $O1-Cd1-O2$ $Cl6-Cd1-O2$ $Cl2-Cd1-O2$ $O1-Cd1-Cl1$ $Cl2-Cd1-Cl1$ $Cl6-Cd1-Cl1$ $Cl2-Cd1-Cl1$ $O2-Cd1-Cl1$ $O1-Cd1-Cl4$ $Cl6-Cd1-Cl4$ $Cl6-Cd1-Cl4$ $Cl2-Cd1-Cl4$ $Cl2-Cd1-Cl4$ $Cl2-Cd1-Cl4$ $Cl3-Cl4-Cl4$ $Cl3-Cl4-Cl6$	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5) 99.64 (3) 86.87 (3) 87.70 (6) 88.36 (6) 86.73 (3) 99.96 (3) 162.05 (6) 109.60 (3) 97.53 (3) 165.51 (3) 90.34 (3)	C5 H5H C5-H5B N1-C3-H3A C4-C3-H3A C4-C3-H3B C4-C3-H3B H3A-C3-H3B N1-C2-C1 N1-C2-H2A C1-C2-H2A C1-C2-H2B C1-C2-H2B H2A-C2-H2B O1-C1-C2 O1-C1-H1C C2-C1-H1C O1-C1-H1D C2-C1-H1D H1C-C1-H1D C6-O2-C7	0.9700 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5 109.5 109.5 109.5 109.5 109.5 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.2 109.5 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.5 109.
$C4 - H4B$ $O1 - Cd1 - Cl6$ $O1 - Cd1 - Cl2$ $Cl6 - Cd1 - Cl2$ $O1 - Cd1 - O2$ $Cl6 - Cd1 - O2$ $Cl6 - Cd1 - O2$ $Cl2 - Cd1 - O2$ $O1 - Cd1 - Cl1$ $Cl6 - Cd1 - Cl1$ $Cl6 - Cd1 - Cl1$ $O2 - Cd1 - Cl1$ $O2 - Cd1 - Cl1$ $O1 - Cd1 - Cl4$ $Cl6 - Cd1 - Cl4$ $Cl6 - Cd1 - Cl4$ $Cl2 - Cd1 - Cl4$ $Cl2 - Cd1 - Cl4$ $Cl2 - Cd1 - Cl4$ $Cl3 - Cd2 - Cl6^{i}$ $Cl3 - Cd2 - Cl6^{i}$ $Cl3 - Cd2 - Cl2$	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5) 99.64 (3) 86.87 (3) 87.70 (6) 88.36 (6) 88.36 (6) 86.73 (3) 99.96 (3) 162.05 (6) 109.60 (3) 97.53 (3) 165.51 (3) 90.34 (3) 86.08 (3)	C5 H5H C5-H5B N1-C3-H3A C4-C3-H3A C4-C3-H3B C4-C3-H3B H3A-C3-H3B N1-C2-C1 N1-C2-H2A C1-C2-H2A C1-C2-H2B C1-C2-H2B H2A-C2-H2B H2A-C2-H2B O1-C1-C2 O1-C1-H1C C2-C1-H1C O1-C1-H1D C2-C1-H1D H1C-C1-H1D C6-O2-C7 C6-O2-C1	0.9700 109.8 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5 109.5 109.5 109.5 109.5 109.5 109.5 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.5 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.5 109.
$C4 - H4B$ $O1 - Cd1 - Cl6$ $O1 - Cd1 - Cl2$ $Cl6 - Cd1 - Cl2$ $O1 - Cd1 - O2$ $Cl6 - Cd1 - O2$ $Cl6 - Cd1 - O2$ $Cl2 - Cd1 - O2$ $O1 - Cd1 - Cl1$ $Cl6 - Cd1 - Cl1$ $Cl6 - Cd1 - Cl1$ $O2 - Cd1 - Cl1$ $O2 - Cd1 - Cl1$ $O2 - Cd1 - Cl4$ $Cl6 - Cd1 - Cl4$ $Cl6 - Cd1 - Cl4$ $Cl2 - Cd1 - Cl4$ $Cl2 - Cd1 - Cl4$ $Cl3 - Cd2 - Cl6^{i}$ $Cl3 - Cd2 - Cl6^{i}$ $Cl3 - Cd2 - Cl2$	0.9700 87.09 (6) 83.92 (5) 168.61 (3) 75.07 (7) 85.59 (6) 85.34 (6) 161.03 (5) 99.64 (3) 86.87 (3) 87.70 (6) 88.36 (6) 88.36 (6) 86.73 (3) 99.96 (3) 162.05 (6) 109.60 (3) 97.53 (3) 165.51 (3) 90.34 (3) 86.08 (3) 168.80 (3)	C5 H5H C5-H5B N1-C3-H3A C4-C3-H3A C4-C3-H3B C4-C3-H3B H3A-C3-H3B N1-C2-C1 N1-C2-H2A C1-C2-H2A N1-C2-H2B C1-C2-H2B H2A-C2-H2B D1-C1-C2 O1-C1-H1C C2-C1-H1C C2-C1-H1C O1-C1-H1D C2-C1-H1D H1C-C1-H1D C6-O2-C7 C6-O2-Cd1 C7-O2-Cd1	0.9700 109.8 109.8 109.8 109.8 109.8 108.2 110.7 (3) 109.5 109.5 109.5 109.5 109.5 109.5 109.4 109.4 109.4 109.4 109.4 109.4 109.4 109.5 109.4 109.4 109.4 109.4 109.4 109.5 109.

supplementary materials

Cl3—Cd2—Cl1	100.76 (3)	N2—C8—H8A	109.8
C15—Cd2—C11	88.88 (3)	С7—С8—Н8А	109.8
Cl6 ⁱ —Cd2—Cl1	91.50 (3)	N2—C8—H8B	109.8
Cl2—Cd2—Cl1	80.02 (3)	С7—С8—Н8В	109.8
Cl3—Cd2—Cl4 ⁱ	87.45 (3)	H8A—C8—H8B	108.2
Cl5—Cd2—Cl4 ⁱ	94.14 (3)	O2—C7—C8	110.9 (3)
Cl6 ⁱ —Cd2—Cl4 ⁱ	79.84 (3)	O2—C7—H7A	109.5
Cl2—Cd2—Cl4 ⁱ	96.62 (3)	С8—С7—Н7А	109.5
Cl1—Cd2—Cl4 ⁱ	170.83 (3)	O2—C7—H7B	109.5
Cd1—Cl2—Cd2	94.98 (3)	С8—С7—Н7В	109.5
Cd1—Cl4—Cd2 ⁱⁱ	93.98 (3)	H7A—C7—H7B	108.1
Cd1—Cl6—Cd2 ⁱⁱ	98.55 (3)	O2—C6—C5	111.1 (3)
Cd1—Cl1—Cd2	94.13 (3)	O2—C6—H6A	109.4
C1—O1—C4	109.6 (2)	С5—С6—Н6А	109.4
C1	119.39 (18)	O2—C6—H6B	109.4
C4—O1—Cd1	128.78 (19)	С5—С6—Н6В	109.4
C2—N1—C3	111.4 (3)	Н6А—С6—Н6В	108.0
C2—N1—H1A	109.4	C8—N2—C5	111.0 (3)
C3—N1—H1A	109.4	C8—N2—H2C	109.4
C2—N1—H1B	109.4	C5—N2—H2C	109.4
C3—N1—H1B	109.4	C8—N2—H2D	109.4
H1A—N1—H1B	108.0	C5—N2—H2D	109.4
O1—C4—C3	110.6 (3)	H2C—N2—H2D	108.0
O1—C4—H4A	109.5	N2C5C6	109.8 (3)
C3—C4—H4A	109.5	N2—C5—H5A	109.7
O1—C4—H4B	109.5	С6—С5—Н5А	109.7
C3—C4—H4B	109.5	N2—C5—H5B	109.7
H4A—C4—H4B	108.1	С6—С5—Н5В	109.7
N1—C3—C4	109.5 (3)	H5A—C5—H5B	108.2
O1—Cd1—Cl2—Cd2	-178.93 (5)	Cl4—Cd1—O1—C1	-20.0 (2)
Cl6—Cd1—Cl2—Cd2	-140.85 (12)	Cl6—Cd1—O1—C4	-132.1 (3)
O2—Cd1—Cl2—Cd2	-103.48 (6)	Cl2—Cd1—O1—C4	40.9 (3)
Cl1—Cd1—Cl2—Cd2	-15.53 (3)	O2-Cd1-O1-C4	-45.9 (3)
Cl4—Cd1—Cl2—Cd2	93.82 (3)	Cl1—Cd1—O1—C4	-20.5 (4)
Cl3—Cd2—Cl2—Cd1	-86.89 (3)	Cl4—Cd1—O1—C4	141.1 (3)
Cl5—Cd2—Cl2—Cd1	22.39 (15)	C1—O1—C4—C3	-63.0 (4)
Cl6 ⁱ —Cd2—Cl2—Cd1	106.55 (3)	Cd1—O1—C4—C3	134.4 (3)
Cl1—Cd2—Cl2—Cd1	14.76 (3)	C2—N1—C3—C4	-52.2 (4)
Cl4 ⁱ —Cd2—Cl2—Cd1	-173.86 (2)	O1—C4—C3—N1	57.9 (4)
O1—Cd1—Cl4—Cd2 ⁱⁱ	94.39 (6)	C3—N1—C2—C1	51.6 (4)
Cl6—Cd1—Cl4—Cd2 ⁱⁱ	7.21 (3)	C4—O1—C1—C2	62.0 (4)
Cl2—Cd1—Cl4—Cd2 ⁱⁱ	177.92 (2)	Cd1-01-C1-C2	-133.6 (2)
O2-Cd1-Cl4-Cd2 ⁱⁱ	72.00 (19)	N1-C2-C1-O1	-56.4 (4)
Cl1—Cd1—Cl4—Cd2 ⁱⁱ	-91.87 (3)	O1—Cd1—O2—C6	-53.8 (2)
O1-Cd1-Cl6-Cd2 ⁱⁱ	-96.14 (6)	Cl6—Cd1—O2—C6	34.3 (2)

Cl2—Cd1—Cl6—Cd2 ⁱⁱ	-134.03 (12)	Cl2—Cd1—O2—C6	-138.8 (2)
O2-Cd1-Cl6-Cd2 ⁱⁱ	-171.38 (6)	Cl1—Cd1—O2—C6	134.2 (2)
Cl1—Cd1—Cl6—Cd2 ⁱⁱ	101.71 (3)	Cl4—Cd1—O2—C6	-30.6 (4)
Cl4—Cd1—Cl6—Cd2 ⁱⁱ	-7.62 (3)	O1—Cd1—O2—C7	118.8 (2)
O1—Cd1—Cl1—Cd2	76.43 (18)	Cl6—Cd1—O2—C7	-153.1 (2)
Cl6—Cd1—Cl1—Cd2	-173.94 (3)	Cl2—Cd1—O2—C7	33.9 (2)
Cl2—Cd1—Cl1—Cd2	15.46 (3)	Cl1—Cd1—O2—C7	-53.2 (2)
O2-Cd1-Cl1-Cd2	100.92 (6)	Cl4—Cd1—O2—C7	142.0 (2)
Cl4—Cd1—Cl1—Cd2	-84.00 (3)	C6—O2—C7—C8	-62.2 (4)
Cl3—Cd2—Cl1—Cd1	69.44 (3)	Cd1—O2—C7—C8	123.8 (2)
Cl5—Cd2—Cl1—Cd1	166.90 (3)	N2	58.5 (4)
Cl6 ⁱ —Cd2—Cl1—Cd1	-102.80 (3)	C7—O2—C6—C5	61.0 (4)
Cl2—Cd2—Cl1—Cd1	-14.58 (3)	Cd1—O2—C6—C5	-125.7 (3)
Cl6—Cd1—O1—C1	66.8 (2)	C7—C8—N2—C5	-54.2 (4)
Cl2—Cd1—O1—C1	-120.2 (2)	C8—N2—C5—C6	53.1 (4)
O2—Cd1—O1—C1	153.0 (2)	O2—C6—C5—N2	-56.5 (4)
Cl1—Cd1—O1—C1	178.43 (19)		

Symmetry codes: (i) *x*-1, *y*, *z*; (ii) *x*+1, *y*, *z*.

Hydrogen-bond geometry (Å, °)

D—H···A	<i>D</i> —Н	$H \cdots A$	$D \cdots A$	D—H··· A
N1—H1A…Cl5 ⁱⁱⁱ	0.90	2.52	3.203 (3)	133.
N1—H1A…Cl6 ^{iv}	0.90	2.98	3.733 (4)	143.
N1—H1B····Cl5 ^v	0.90	2.38	3.183 (3)	149.
N2—H2C···Cl3 ^{vi}	0.90	2.56	3.276 (3)	137.
N2—H2C···Cl2 ^{vi}	0.90	2.76	3.323 (3)	122.
N2—H2D····Cl3 ^{vii}	0.90	2.73	3.413 (3)	133.
N2—H2D····Cl4 ^v	0.90	2.74	3.497 (3)	142.

Symmetry codes: (iii) -*x*+1, *y*+1/2, -*z*+3/2; (iv) -*x*+2, *y*+1/2, -*z*+3/2; (v) -*x*+3/2, -*y*+1, *z*+1/2; (vi) -*x*+1, *y*-1/2, -*z*+3/2; (vii) -*x*+1/2, -*y*+1, *z*+1/2.

